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● Introduction: non-scaling FFAGs

● New applications of non-scaling FFAGs

● Producing “optimized” linear non-scaling FFAG designs

● Analytic models for linear non-scaling FFAGs

● Tracking of non-scaling FFAGs

● Concluding remarks
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Introduction

● First FFAGs, and all FFAGs built thus far, are “scaling”
◆ Transverse dynamics independent of energy, except for

energy-dependent scaling factor
◆ Tune is independent of energy: avoid resonances
◆ Highly nonlinear magnets

● North American work has focused on “non-scaling FFAGs”
◆ Most are “linear non-scaling FFAGs”: use magnets with a linear

midplane field profile
◆ Linear magnets thought to give larger dynamic aperture
◆ Smaller physical magnet aperture
◆ Tunes no longer constant: resonances

★ Highly symmetric lattice (every cell the same, short cells)minimizes
driving of multi-cell resonances

★ Highly linear lattice minimizes driving of nonlinear resonances
★ Rapid acceleration means little time spent on resonance

3



Applications

● General applicability

◆ Magnet fields don’t vary: allows rapid acceleration
◆ Circular, so multiple passes through (expensive) RF
◆ Often a good replacement for a linac

● Original motivation for recent interest in US/Canada: muonacceleration

◆ Muons decay, so acceleration must be rapid
◆ Linac prohibitively expensive, especially considering cost of 200 MHz

RF required
◆ Recirculating accelerator has problems

★ Switchyard difficulty limits number of turns to 4–5
★ This is still a lot of RF: expensive

4



Applications: eRHIC

● Electron-ion collider in the RHIC tunnel at BNL

● Accelerate polarized electrons as high as 10 GeV

● Avoid depolarizing resonances

● Baseline: recirculating linac

● Proposal (Trbojevic): replace with linear non-scaling FFAG

◆ Accelerate from 3.2 GeV to 10 GeV
◆ Accelerate rapidly through depolarizing resonances
◆ Triplet (FDF) design, 273 cells
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eRHIC Lattice Cell
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Applications: Replace AGS Booster

● AGS Upgrade being proposed
◆ Upgrade to 1 MW beam power
◆ Acceleration cycle must be shortened
◆ Beam current must be increased

● One part of proposal: replace current 1.5 GeV booster with linac
◆ Eliminate multiple ramp-ups required to fill AGS

● Alternative: use FFAG instead
◆ Rapid acceleration, so doesn’t increase cycle time substantially
◆ Install small amount of RF: around 1000 turns to accelerate

★ Prefer constant tune of scaling FFAG to avoid resonances
◆ Need low magnetic fields to prevent H− stripping: < 0.3 T

★ Attempts to meet this field limitation with scaling FFAG failed
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Nonlinear Non-Scaling FFAG

● Want non-scaling FFAG, but low chromaticity

● Consider equations of motion:

x′′ + h2(1 + n)x/(1 + δ) = hδ/(1 + δ) y′′ + h2ny/(1 + δ) = 0

◆ If field indexn is proportional to 1+ δ, vertical tune is independent of
energy (Ruggiero)

◆ Horizontal tune not independent of energy, but close
◆ With end effects, both tunes become energy dependent, but effect is

small

● Field index condition is local: field profile varies longitudinally along
magnet
◆ Solve for closed orbit and field self-consistently: Mathematica
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Nonlinear Non-scaling FFAG: Lattice
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Nonlinear Non-scaling FFAG: Tunes

● Fractional tunes: integral parts are 39 and 37 (H/V)
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Optimization

● Lattices are just simple repeated cells (doublet, triplet,FODO)
● Use optimizer to minimize some cost function to produce designs (Berg)

◆ Cost function based on model for magnet and RF costs has been used
(Palmer)

◆ Decay cost has also been added, based on detector cost

● Much has been learned through this
◆ Doublet cell is more cost-effective than triplet or FODO
◆ Making the ring longer often reduces magnet costs (dispersion reduces

aperture)
◆ Optimal lattices has specific tune profiles, independent of central

energy (fit in pipe)
◆ Lower energy FFAGs cost more per GeV than higher energy

● Ability to find cost and parameters as a function of input parameters
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FFAG Tune Profiles
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Ellipses in Magnet Aperture
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Cost Dependence on Acceptance
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Analytic Models

● Simplicity of lattice leads to desire for analytic treatment
◆ Speed up above optimization process
◆ Directly compute first-cut design

● Wide range of energy makes it more than a simple linear problem
● Thin lens models (Craddock, Koscielniak, Johnstone)

◆ Produce simply expressed results: good for design
◆ These have been used to produce parameter sets
◆ Give a good picture of scaling laws
◆ Not highly accurate, but not too bad

● Thick lens models (Koscielniak)
◆ We know the solution for linear magnets

★ But not exactly in the curved geometry
◆ Can get highly accurate solutions, except for small rings
◆ Don’t lead to nice, easy to write down formulas
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Accuracy of Thick-Lens Model
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Tracking

● FFAGs present challenges to tracking codes

◆ Large energy range, often large dynamic aperture
◆ Short magnets: end fields make significant contribution to dynamics

★ Few tracking codes can handle complex ends
★ COSY handles ends, but truncated power series sometimes fail to

converge over desired range
★ ICOOL (Fernow), ZGOUBI (Ḿeot) both handle ends to some extent

● Tracking has begun on some lattices (Palmer)

◆ Muon acceleration lattices
★ Sextupole ends on magnets included
★ Resonance crossing with end nonlinearities causes rapid beam loss
★ Showed a fairly precise body sextupole correction fixes the problem
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Tracking: Field Profile
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Tracking: Loss at Resonance
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Tracking: PRISM

● Used ICOOL to track PRISM

● Dynamic aperture much higher fory = 0 than with slight vertical
amplitude

● Tried multiple variations on the end profile; found a more slowly varying
end profile gave better dynamic aperture

● Produced a linear non-scaling version of the PRISM lattice

● Appears to have a better dynamic aperture

◆ Plot is somewhat deceptive: linear non-scaling is at 80 MeV/c, scaling
is at 68 MeV/c
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Tracking: PRISM Dynamic Aperture
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Electron Model

● Would like to build low energy (10-20 MeV?) linear non-scaling FFAG
◆ Linear non-scaling FFAGs are of great interest
◆ Nobody has ever built one
◆ Prove we understand the dynamics
◆ In particular, demonstrate that we can accelerate in the unusual

accelerating mode used for high-frequency RF with muons
(Koscielniak’s talk)

● Several authors have produced parameter sets
◆ Typically S-band RF, a 10–20 m in circumference

● Keil and Sessler have analyzed a couple designs more thoroughly
◆ Errors
◆ Hardware considerations

● There is serious discussion of moving forward with a proposal,
especially in Europe
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Electron Model Lattice
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Conclusion

● Much progress has been made recently in the design of non-scaling
FFAGs

● Non-scaling FFAGs have been proposed for several new applications

● We are gaining a better understanding of how to optimally design these
machines, particularly linear non-scaling FFAGs

◆ Both analytic and numerical methods are being employed
◆ These methods are leading to understanding of design principles

● Non-scaling lattices are being extended beyond the simple linear
non-scaling lattices

● Serious consideration is begin given toward an electron model to
demonstrate linear non-scaling FFAGs
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